Approval body for construction products and types of construction **Bautechnisches Prüfamt** An institution established by the Federal and Laender Governments # **European Technical Assessment** ETA-15/0476 of 12 July 2017 English translation prepared by DIBt - Original version in German language #### **General Part** Technical Assessment Body issuing the European Technical Assessment: Trade name of the construction product Product family to which the construction product belongs Manufacturer Manufacturing plant This European Technical Assessment contains This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik TUF-S Fastener for the rear fixing of facade panels made of highpressure decorative laminates (HPL) according to EN 438-7:2005 SFS intec AG Rosenbergsaustraße 10 9435 HEERBRUGG SCHWEIZ Werke der SFS intec AG 16 pages including 3 annexes which form an integral part of this assessment European Assessment Document (EAD) 330030-00-0601 # European Technical Assessment ETA-15/0476 English translation prepared by DIBt Page 2 of 16 | 12 July 2017 The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such. Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such. This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011. Z17424.17 8.06.01-225/15 European Technical Assessment ETA-15/0476 English translation prepared by DIBt Page 3 of 16 | 12 July 2017 ### **Specific Part** #### 1 Technical description of the product The TUF-S-6xL is special anchor made of stainless steel for fixing HPL-facade panels according to EN 438-7:2015 to metal substructures. The anchor consits of a mandrel made of carbon steel zinced and a stainless steel sleeve. The anchor is put in a drill hole and placed by pulling out the mandrel. The pull out of the mandrel widens the body of the sleeve and punches the thread of the sleeve into the façade panel. The product description is given in Annex A. # 2 Specification of the intended use in accordance with the applicable European Assessment Document The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B. The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchors of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works. #### 3 Performance of the product and references to the methods used for its assessment # 3.1 Mechanical resistance and stability (BWR 1) | Essential characteristic | Performance | |---|---------------| | Characteristic resistance for tension and shear loads | See Annex C 1 | | Anchor distances | See Annex C 1 | #### 3.2 Safety in case of fire (BWR 2) | Essential characteristic | Performance | | | | | |--------------------------|-------------------------|--|--|--|--| | Reaction to fire | Class A1 | | | | | | Resistance to fire | No performance assessed | | | | | # 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base In accordance with EAD No. 330030-00-0601 the applicable European legal act is: [97/161/EG]. The system to be applied is: 2+ Z17424.17 8.06.01-225/15 # European Technical Assessment ETA-15/0476 English translation prepared by DIBt Page 4 of 16 | 12 July 2017 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik. Issued in Berlin on 12 July 2017 by Deutsches Institut für Bautechnik BD Dipl.-Ing. Andreas Kummerow Head of Department *beglaubigt:* Aksünger Z17424.17 8.06.01-225/15 Table 1 | Anchor parts | Material | |--------------|---------------------| | Sleeve | Stainless steel A4 | | Mandrel | Carbon steel zinced | TUF-S Product description System components Annex A 2 # Specifications of intended use # Anchorages subject to Static and quasi-static loads #### Base material The façade panel made of HPL shall correspond to Annex B 4 #### Use conditions (Environmental conditions): - Structures subject to dry internal conditions. - Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanently damp internal condition, if no particular aggressive conditions exist. Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used). #### Design: The design of the façade panels and their fixing is carried out according to the conditions given in Annex B 2 and B 3. #### Installation - Each façade panel shall be fixed technically strain-free with at least four anchors in a rectangular arrangement. - The substructure is constructed such that the façade panels are fixed technically strain free via skids (loose bearings) and one fixed point (fixed bearing). - The thickness of the fixing member (clamp or panel load-bearing profile) shall be at least 2,0 mm and shall be at least made of aluminum with $R_m \ge 215 \text{ N/mm}^2$. - The drillings are done at the factory or on site. The drillings are executed with special drill bits made available by SFS intec AG. The drillings are executed by skilled personnel. - The façade panel is pre-drilled with diameter Ø 5,9 mm to 6,0 mm. - The drilling is always in a 90°- angle to the panel's surface. - The minimum edge distance of the drilling is 40.0 mm. - The clamps are predrilled with diameter Ø 6,5 mm to 7,0 mm. - The geometry of the drill hole shall be checked minimum on 1% of all drillings. - The façade panels, their fixings as well as the substructure including its connection to wall brackets and their connection to the construction works are designed for the respective case of application under the responsibility of an engineer skilled in the field of façade construction. - The panels are installed by skilled specialists and the laying instructions of the manufacturer shall be paid attention to. - Overhead mounting is not possible | TUF-S | | |--------------------------------|-----------| | Intended use
Specifications | Annex B 1 | # **Design method** #### Loads The design loads shall be calculated on basis of EN 1990. The combination of loads shall be equal to EN 1990. The loads shall be specified according to EN 1991-1-1 to EN 1991-1-7. Corresponding national regulations shall be taken into consideration. The unfavorable combination is decisive. Where necessary for the design of the anchor and the facade panel several combinations shall be analyzed separately. The typical fundamental combination for façade panels considers loads from dead load $F_{Ek,G}$ (permanent loads) and wind $F_{Ek,W}$ (leading variable load) According to EN 1990 the following fundamental combination depending on the load direction results for a vertical façade panel: Fundamental combination for loads parallel to the panel: $$F_{EdII} = F_{Ek,G} \cdot \gamma_G$$ Fundamental combination for loads perpendicular to the panel: $$\mathsf{F}_{\mathsf{Ed} \bot} = \mathsf{F}_{\mathsf{Ek},\mathsf{w}} \cdot \gamma_{\mathsf{Q}}$$ mit $$\gamma_G = 1,35$$; $\gamma_Q = 1,50$ ### Resistance: $$N_{Rd} = \frac{N_{Rk}}{\gamma_M} \cdot \alpha_{F0} \cdot \alpha_{bend} \cdot \alpha_{wet}$$ $$V_{Rd} = \frac{V_{Rk}}{Y_M} \cdot \alpha_{F0} \cdot \alpha_{wet}$$ $$\sigma_{Rd} = \frac{\sigma Rk}{\gamma_M}$$ #### with: N_{Rk} = characteristic tension resistance according to Annex C 1, Table 5 to 7 V_{Rk} = characteristic shear resistance according to Annex C 1, Table 5 to 7 σ_{Rk} = characteristing bending stress according to EN 438:2016 α_{F0} = If the façade panels do not meet the minimum requirements according to Annex B 4, Table 2, the characteristic values of load bearing capacity have to be multiplied additionally by α_{F0} : $$\alpha_{F0} = min\left\{\frac{\sigma_{f,L,min}}{130 \ N/mm^2}; \ \frac{E_{L,min}}{14000 \ N/mm^2}; \frac{\sigma_{f,T,min}}{100 \ N/mm^2}; \ \frac{E_{T,min}}{10000 \ N/mm^2}; \ 1\right\}$$ α_{bend} = reduction factor of bearing of facade panel The bending angle of the façade panel $$S = \arctan\left(\frac{u_{max}}{L/2}\right)$$ $$\beta \le 1.0^{\circ}$$ => $\alpha_{bend} = 1.0$ 1.0° < $\beta \le 1.5^{\circ}$ => $\alpha_{bend} = 0.89$ $$1.5^{\circ} < \Omega \le 2.0^{\circ} => \alpha_{bend} = 0.80$$ α_{wet} = If the façade panels do not meet the minimum requirements regarding the maximum mass increase of δ_{w} = 2.0% according to Table 2, the characteristic values of load bearing capacity have to be multiplied additionally by α_{wet} = 0,78. $$\gamma_{M} = 1,8$$ TUF-S Intended use Design method Annex B 2 # Page 9 of European Technical Assessment ETA-15/0476 of 12 July 2017 English translation prepared by DIBt #### Verification The calculation shall be carried out in a linear elastic manner. The stiffness of the substructure shall be considered for the respective case of application. For the determined anchor loads it shall be verified, that the following equations are met. Equation 1: $$\frac{N_{Ed}}{N_{Rd}} \leq 1$$ Equation 2: $$\frac{V_{Ed}}{V_{Rd}} \leq 1$$ Equation 3: $$\frac{V_{Ed}}{V_{Rd}} + \frac{N_{Ed}}{N_{Rd}} \le 1$$ with: N_{Ed} = design value of the tensile force acting on the anchor V_{Ed} = design value of the shear force acting on the anchor N_{Rd} = design value of the tensile load bearing capacity of the anchor V_{Rd} = design value of the shear load bearing capacity of the anchor For the determined panel loads it shall be verified, that the following equation according is met: Equation 4: $$\frac{\sigma_{\rm Ed}}{\sigma_{\rm Pd}} \le 1$$ with: WILII. σ_{Ed} = design value of the bending stress of the façade panel σ_{Rd} = design value of the bending stress resistance of the façade panel TUF-S **Intended use**Design method Annex B 3 # Requirements to the façade panels The HPL façade panels shall be classified "EDS" or "EDF" according to EN 438-6:2014. The minimum requirements for the façade panels are documented in the following table Table 2: Minimum requirements for the façade panel | Φ | Thickness of the panel | h≥ | [mm] | 8 | |--|--|---------------------------|-------------------|-------| | Characteristic values for the facade panel | Bending stress ¹⁾ | | N/mm ² | ≥ 100 | | | bending stress | $\sigma_{\!fm,\!L}^{(2)}$ | IN/IIIIII | ≥ 130 | | | Dec die e vers delles | $E_T^{(3)}$ | N/mm ² | 10000 | | acteris | Bending modulus | $E_L^{(3)}$ | IN/ITIIII | 14000 | | Chara | Maximum mass increase according to EN 438-2:2016-06, section 15 (Resistance to wet conditions) | $\delta_{\sf w}$ | [%] | 2,00 | 1) according to EN ISO 178:2013-09 σ_{fm} $\sigma_{fm,T}$: Bending strength transverse 2) $\sigma_{fm,L}$: Bending strength longitudinal Bending modulus transverse E_T : E_L : Bending modulus longitudinal | TUF-S | | |---------------------------------------|-----------| | Intended use | Annex B 4 | | Requirements to the HPL-facade panels | | 3) Z17408.17 8.06.01-225/15 # Definition of edge distance and spacing # Legend: $a_{rx,y}$ = edge distance – distance of an anchor to the panel edge a_{x,y} = spacing between outer anchors in adjoining groups or between single anchors distance between anchors a_D = spacing of anchors in an anchor group L_x = greater length of the façade panel L_y = smaller length of the façade panel ++ = horizontal skid (loose bearing) = horizontal and vertical skid (loose bearing) | TUF-S | | | |--|-----------|--| | Intended use Definition of edge distance and spacing | Annex B 7 | | # Installation parameters h_{nom} = Panel nominal thickness h_s = anchorage depth s = bracket thickness L_s = length TUF-S $[h_s + s = Ls]$ # Table 4 | Product | Panel nominal thickness | Bracket thickness | anchorage depth | |--|-------------------------|-------------------|-----------------| | TUF-S-6X7-A4 | 8mm | 2mm | 5mm | | UF-S-6X7-A4 UF-S-6X8-A4 UF-S-6X8-A4 UF-S-6X8-A4 UF-S-6X9-A4 | | 2mm | 5.5mm | | | 8mm | 2.5mm | 5mm | | THE O CWO A I | | 2mm | 6mm | | TUF-5-6X8-A4 | 8mm | 2.5mm | 5.5mm | | | | 3mm | 5mm | | TUE-S-6X8 5-A4 | 8mm | 3mm | 5.5mm | | 01 0 0/10.0711 | | 2.5mm | 6mm | | | 8mm | 3mm | 6mm | | UF-S-6X7-A4 8mm UF-S-6X7.5-A4 8mm UF-S-6X8-A4 8mm UF-S-6X8.5-A4 8mm UF-S-6X9-A4 10mm UF-S-6X10-A4 10mm 110mm UF-S-6X11-A4 12mm 10mm 10mm | | 4mm | 5mm | | | | 2mm | 7mm | | | 10mm | 2,5mm | 6,5mm | | | | 3mm | 6mm | | TUF-S-6X9-A4 TUF-S-6X10-A4 TUF-S-6X11-A4 | | 2mm | 8mm | | | | 2,5mm | 7,5mm | | | 10mm / 12mm | 3mm | 7mm | | | | 3,5mm | 6,5mm | | | | 4mm | 6mm | | | 10mm | 3mm | 8mm | | | Tomin | 4mm | 7mm | | TIE S.6Y11.A4 | | 2mm | 9mm | | JF-S-6X9-A4
JF-S-6X10-A4
JF-S-6X11-A4 | 12mm | 2,5mm | 8,5mm | | | 1211111 | 3mm | 8mm | | | | 4mm | 7mm | | | 10mm | 4mm | 8mm | | HE-S-6X12-A4 | | 2mm | 10mm | | JF-S-6X11-A4
JF-S-6X12-A4 | 12mm | 3mm | 9mm | | | | 4mm | 8mm | | | 10mm | 5mm | 8mm | | UF-S-6X13-A4 | 12mm | 3mm | 10mm | | | 12.000 | 4mm | 9mm | # **TUF-S-6X7-A4** TUF...name product S......stainless steel 6......ø (diameter) 7.....L_s (length) A4....stainless steel A4 material | TU | F-S | |----|-----| |----|-----| # Intended use Installation parameters Annex B 8 #### Installation instructions Pilot drilling in the panel with the 6 mm dia. HSS drill bit with depth locator or CNC machine Position the pre-drilled bracket over the hole in the panel and push through the TUF-S blind fastener Apply pressure with the rivet setting tool during the setting process. Remove the mandrel completely with the riveting tool (GESIPA PowerBird, PowerBird Pro, use nosepiece 17/36 or 17/40) TUF-S Intended use Installation instructions Annex B 9 #### Characteristic value of the anchor Table 5: Characteristic values of the anchor with single clamp | | Single clamp | | | | | | | | | | | |---------------------------|----------------------------|----------------------|-----------------|------|-------|------|------|------|------|------|------| | for | Setting depth ² | | | [mm] | 5,0 | 5,5 | 6,0 | 6,5 | 7,0 | 7,5 | 8,0 | | values | Characteristic resistance | Tension ¹ | N _{Rk} | [kN] | 1,12 | 1,26 | 1,40 | 1,65 | 1,90 | 1,97 | 2,04 | | istic vali | | Shear | V _{Rk} | [kN] | 2,78 | 2,89 | 2,99 | 3,28 | 3,57 | 3,79 | 4,00 | | Characteristic
the anc | Edge distance | | ar | [mm] | ≥ 40 | | | | | | | | Ch | Spacing | | а | [mm] | ≥ 100 | | | | | | | Table 6: Characteristic values of the anchor with double clamp (20,0 mm \leq a_D < 40,0 mm) | Table 6. Orlanderistic values of the another with double claims (20,0 mm = a) 1.40,0 mm | | | | | | | | | | | | |---|----------------------------|----------------------|-----------------|------|-------|------|------|------|------|------|------| | Double clamp with 20,0 mm ≤ a _D < 40,0 mm | | | | | | | | | | | | | two | Setting depth ² | | | [mm] | 5,0 | 5,5 | 6,0 | 6,5 | 7,0 | 7,5 | 8,0 | | ues for | Characteristic resistance | Tension ¹ | N _{Rk} | [kN] | 1,93 | 2,03 | 2,11 | 2,41 | 2,71 | 2,71 | 2,71 | | Characteristic values for two anchors | | Shear | V _{Rk} | [kN] | 4,85 | 4,85 | 4,85 | 5,83 | 6,80 | 6,80 | 6,80 | | | Edge distance | | ar | [mm] | ≥ 40 | | | | | | | | | Spacing | | а | [mm] | ≥ 100 | | | | | | | Table 7: Characteristic values of the anchor with double clamp (40.0 mm $\leq a_D < 100.0$ mm) | Table 1. | Table 7. Characteristic values of the anchor with double clamp (40,0 min) | | | | | | | | | | | | |---------------------------------------|---|----------------------|----------------|------|-------|------|------|------|------|------|------|--| | | Double clamp with 40,0 mm ≤ a _D < 100,0 mm | | | | | | | | | | | | | two | Setting depth ² | | | [mm] | 5,0 | 5,5 | 6,0 | 6,5 | 7,0 | 7,5 | 8,0 | | | ues for | Characteristic resistance | Tension ¹ | N_{Rk} | [kN] | 2,07 | 2,26 | 2,44 | 3,17 | 3,89 | 3,89 | 3,89 | | | Characteristic values for two anchors | | Shear | V_{Rk} | [kN] | 4,85 | 4,85 | 4,85 | 5,83 | 6,80 | 6,80 | 6,80 | | | | Edge distance | | a _r | [mm] | ≥ 40 | | | | | | | | | Chai | Spacing | | а | [mm] | ≥ 100 | | | | | | | | - 1 Values valid for bending angle of the façade panels & ≤ 1,0 $^{\circ}$ (Definition of & see Annex B 2) - 2 A minimum remaining panel thickness (panel thickness setting depth) of 2,0 mm is required. For intermediate values of the setting depth, linear interpolation is possible. | TUF-S | | |---|-----------| | Performances Characteristic value of the anchor | Annex C 1 |